Multistep Methods
Whine been solving IVP's

$$
\left\{\begin{array}{l}
y^{\prime}=F(t, y) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

using iterations of the form

$$
\begin{aligned}
& \left\{w_{0}=y_{0}\right. \\
& \left\{\omega_{n+1}=w_{n}+h F\left(t_{n}, \omega_{n}\right)\right\rangle \\
& \text { or } w_{n+1}=w_{n}+h T^{(2)}\left(t_{n}, \omega_{n}\right) \\
& o \sim \omega_{n+1}=\frac{\omega_{n}+\frac{h}{2}\left[f\left(t_{n}, \omega_{n}\right)+h\left(t_{n+1}, \omega_{n}+h f\left(t_{n}, n\right)\right)^{n}\right)}{}
\end{aligned}
$$

In all cases, we only used in in estimating ω_{n+1}
(we never used w_{n-1}, w_{n-2}, etc...)
Multistep methods use several previous estimates to compute the next one.

Idea:

$$
\begin{aligned}
& y^{\prime}=f(t, y) \\
& \Rightarrow \underbrace{\int_{t_{n}} y^{\prime} d t}=\underbrace{\int_{t_{n}}^{t_{n+1}} f(t, y) d t}
\end{aligned}
$$

$y\left(t_{n+1}\right)-y\left(t_{n}\right)$ approximate using numerical integration
Suppose $\int_{t_{n}}^{t_{n+1}} f(t, y) d t$

$$
\begin{aligned}
\approx a & \overbrace{f\left(t_{n}, y_{n}\right)}^{t_{n}}+b \overbrace{f\left(t_{n-1}, y_{n-1}\right)}^{f_{n-1}} \\
& +c F\left(t_{n-2}, y_{n-2}\right)+\cdots
\end{aligned}
$$

or more generally

$$
\int_{t_{n}}^{t_{n+1}} f(t, y) d t \approx h \sum_{i=0}^{5-1} a_{i} f_{n-i}
$$

Then, we can write

$$
\begin{aligned}
& \left(w_{n+1} \approx w_{n}+h \sum_{i=0}^{s-1} a_{i} F\left(t_{n-i}, w_{n-i}\right)\right. \\
& \Leftrightarrow \text { Adans-Bashforth Formula }
\end{aligned}
$$ of orders

But how do we determine the a_{i} 's?

Undetermined corf's!
(Take $h=1, t_{n}=0$)

$$
\int_{0}^{1} p(t) d t=\sum_{i=0}^{s-1} a_{i} p(-i)
$$

\rightarrow take $p(t)=1$

$$
\begin{aligned}
& p(t)=t \\
& p(t)=t^{2} \text { or } t(t+1)
\end{aligned}
$$

to get s-équation \& s-unknowns (the di's)

Example3
two-step Adams-Bashforth

$$
\begin{aligned}
& \omega_{n+1}=\omega_{n}+\frac{3}{2} h f\left(t_{n}, \omega_{n}\right)-\frac{1}{2} h f\left(t_{n-1}\right)_{n-y}^{\omega_{n}} \\
& \left(\begin{array}{l}
\left(\omega_{0}=y_{0}\right) \\
\omega_{1}=? \rightarrow \text { Enler'mithed } \\
\end{array}\right.
\end{aligned}
$$

Exercise: denive this!

Adans-Moulton Formala
Previously, we approximatel

If instead we go all the way up to δ_{n+1} :

$$
w_{n+1}=w_{n}+\underbrace{a f_{n+1}}+b f_{n}+c f_{n-1} \cdots
$$

"last" term is f_{n+1}
Then we get an (Adans-Moulton formula.

The coefficients a_{i} can also be determined via undetermined coff's.

Example AM order 2:

$$
\begin{aligned}
& w_{n+1}=\omega_{n}+\frac{1}{2} h\left[f\left(t_{n+1} \omega_{n+1}\right)+f\left(t_{n}, \omega_{n}\right)\right] \\
& \text { Demark: D }
\end{aligned}
$$

AM methods have ω_{n+1} appear on both sides of the equation so they are called implicit methods since we have to solve an equation (e, using $\frac{\text { Newton's }}{\omega_{n+1}}$ method) to get ${ }^{\omega_{n+1} \circ}$

Alternatively: You could use an ABB method to estimate ω_{n+1}^{*} and use that on the
right hand side.
In our example, we could lo

$$
\begin{aligned}
& \left.\omega_{n+1}^{*}=\omega_{n}+\frac{3}{2} h f\left(t_{n}, \omega_{n}\right)-\frac{1}{2} h f\left(t_{n-1}, \omega_{n-1}\right)\right] \\
& \text { } \uparrow \text { Predictor }(A B 2) \\
& \text { } \operatorname{V} \text { corrector }(A M 2) \\
& \omega_{n+1}=w_{n}+\frac{h}{2}\left[f\left(t_{n+11} \omega_{n+1}^{*}\right)+f\left(t_{n}, \omega_{n}\right)\right]
\end{aligned}
$$

where $w_{0}=y_{0}$
$w_{1}=$ estimate using some (eng. Re).

General multi-step methods:

$$
\begin{aligned}
a_{k} \omega_{n} & +a_{k-1} \omega_{n-1}+\cdots a_{0} \omega_{n-k} \\
& =h\left[b_{k} f_{n}+b_{k-1} f_{n-1}+\ldots+b_{0} f_{n-k}\right]
\end{aligned}
$$

When $b_{k}=0 \rightarrow$ Explicit method
$b_{k} \neq 0 \rightarrow$ Implicit method
Want to understand the error

Define:

$$
L(y)=\sum_{i=0}^{k} a_{i} y(i h)-h b_{i} y^{\prime}(i h)
$$

linear functional
Theorem: The hollowing are equiv,
$(1) L(P)=0 \quad \forall$ polynomial of
$\rightarrow p$ of degree $\leqslant m$
$\{(2) L(y)$ is $\underbrace{O\left(h^{m+1}\right)} \forall y \in C^{m+1}$

Recall that we derived $A B$ method by satisfying (1), so we get (2) hor free!

What is the order of the method given dy of

$$
w_{n}=w_{n-2}+\frac{1}{3} \ell\left[f_{n}+4 f_{n-1}+f_{n-2}\right]
$$

Let's check

$$
\begin{aligned}
L(y)= & y(0) \\
& -y(-2 h) \\
& -\frac{1}{3} h\left[y^{\prime}(0)+4 y^{\prime}(-h)\right. \\
& \left.+y^{\prime}(-2 h)\right]
\end{aligned}
$$

Check: 1$) y=1$

$$
\Rightarrow L(y)=1-1+\frac{1}{3}[0]=0
$$

b) $y=t, y^{\prime}=1$

$$
L(y)=0+2 h-\frac{1}{3} h[1+4+1]=0
$$

$$
\begin{aligned}
& \text { 3) } y=t^{2} \Rightarrow y^{\prime}(t)=2 t \\
& \angle(y)=0-4 h^{2}-\frac{1}{3} h\left[\begin{array}{c}
0+4(-2 h) \\
+(-4 h)
\end{array}\right]
\end{aligned}
$$

$$
\text { 4) } \begin{aligned}
& y=t^{3} \Rightarrow y^{\prime}=3 t^{2} \\
& L(y)=0-(-2 h)^{3}-\frac{h}{3}\left[0+4 \cdot 3(-h)^{2}\right. \\
&\left.+1 \cdot 3(-2 h)^{2}\right] \\
&=8 h^{3}-4 h^{3}-4 h^{3}=0
\end{aligned}
$$

5) $y=t^{4}$,

$$
\angle(y)=-\nRightarrow O\left(h^{5}\right)
$$

